Joumal of Organometallic Chemistry, 148 (1978) C15-C18
© Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

RHODIUM(II) DIMERS: THE PREPARATION AND STRUCTURE OF [($\left.\left.\mathrm{p}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NG}\right)_{8} \mathrm{Rh}_{2} \mathrm{I}_{2}\right]$ $\left[\mathrm{PF}_{6}\right]_{2}$

MARILYN M. OLMSTEAD and ALAN L. BALCH
Department of Chemistry, University of California, Davis, California 95616 (U.S.A.)
(Received December 12th, 1977)

Summary
Oxidation of $\left[\left(\mathrm{p}^{-} \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{4} \mathrm{Rh}\right]\left[\mathrm{PF}_{6}\right]$ with one half mole of iodine or bromine produces $\left[\left(\mathrm{P}^{-} \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{8} \mathrm{Rh}_{2} \mathrm{X}_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$. The crystal structure of the iodide complex establishes the existence of a direct Rh-Rh bond (2.785 \&) with pseudooctahedral coordination about each rhodium completed by terminal isocyanide and iodide ligands.

Recently we reported that alkyl isocyanide complexes of Rh (II) are formed by the association of $\mathrm{Rh}(\mathrm{I})$ and Rh (III) complexes via equation 1 and, based on spectroscopic evidence, proposed that these $\mathrm{Rh}(\mathrm{II})$ cations contain

$$
\begin{equation*}
(\mathrm{RNC})_{4} \mathrm{Rh}^{+}+(\mathrm{RNC})_{4} \mathrm{RhX}_{2}^{+} \rightleftharpoons(\mathrm{RNC})_{8} \mathrm{Rh}_{2} \mathrm{x}_{2}^{2+} \tag{1}
\end{equation*}
$$

a direct $\mathrm{Rh}-\mathrm{Rh}$ bond. l Aryl isocyanide complexes (ArNC) $8_{8} \mathrm{Rh}_{2} \mathrm{X}_{2}^{2+}$ have been prepared on several occasions but no spectroscopic or structural data characterizing these species have been reported. $2,3,4$ These aryl isocyanide complexes have been formulated as polymers with -Rh-I-Rh-I- chains ${ }^{3}$ or as mixed valence $\operatorname{Rh}(I)$ - Rh(III) materials. ${ }^{4}$ Support for the possibility of a halo bridged structure for (RNC$)_{8} \mathrm{Rh}_{2} \mathrm{I}_{2}^{2+}$ comes from the analogy with the diamagnetic form of $(\mathrm{PhNC})_{4} \mathrm{CoI}_{2}$ which has been shown to have the ionic structure $\left[\mathrm{CO}_{2} \mathrm{I}_{3}(\mathrm{CNPh})_{8}\right] \mathrm{I}, 1.5^{2}$

1

The Rh(II) complexes $\left[\left(\mathrm{P}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{8} \mathrm{Rh}_{2} \mathrm{X}_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}(\mathrm{X}=\mathrm{I}, \quad$ (C $=\mathrm{N}) 2194 \mathrm{~cm}^{-1}$, $\mathrm{x}=\mathrm{Br}, \nu(\mathrm{C}=\mathrm{N}) 2199 \mathrm{~cm}^{-1}$) are readily formed by oridizing $\left[\left(\mathrm{p}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}_{4} \mathrm{Rh}^{2}\right]\right.$ [PF $]_{6}(V(C=N)$ 2160) with one half wole of iodine or bromine in acetonitrile solution. The Rh(II) cations are similar to their alkyl analogs. In solucion they disaociate into ($\left.\mathrm{P}^{-} \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{~B}_{4} \mathrm{NC}\right)_{4} \mathrm{Rh}^{+}$and $\left(\mathrm{P}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{4} \mathrm{RhX}_{2}^{+}(\mathrm{X}=\mathrm{I}$, $\nu(C=A) 2224 \mathrm{~cm}^{-1}, x=B r, \nu(C=N) \quad 2229 \mathrm{~cm}^{-1}$) according to the reverse of eq. 1. This equilibrium is established rapidly in both directions but is strongly solvent dependent. Dissociation is essentially complete in solvents of low dielectric (cichloromethane, chloroform) but appreciable amounts of Rh (ir) dimer exist in acetone or acetonitrile solution.

In order to determine the precise geometry of one of these Rh(II) dimers the crystal structure of $\left[\left(\mathrm{P}_{-1} \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}\right){ }_{8} \mathrm{Rh}_{2} \mathrm{I}_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$ vas determined. Air stable brom crystals were obtained by diffusion of diethyl ether into an acetonitrile solution.* Crystal data (150 K): Space group c2/c; a = $28.0475(24), b=18.4901(14), c=14.9704(11) \& ; \beta=120.228$ (5); $\rho_{\text {expt1 }}{ }^{298 \mathrm{~K}} 1.612, \rho_{\text {calc }} 150 \mathrm{~K}=1.671 \mathrm{~g} / \mathrm{cm}^{3} ; \mathrm{z}=4 ; \mu_{\mathrm{cu}}=126.8 \mathrm{~cm}^{-1}$. Intensity data were collected at 150 X on a Syntex P_{1} automated diffractometer using cu Kar radiation. A total of 4794 reflections nere collected by a variable speed ω scan of the most intense part of the peak. The structure was solved and refined keeping all atoms isotropic by Patterson, Fourier and least squares methods to an R index of 0.11 using 4228 reflections.

The structure consists of discrete $\left(\mathrm{p}_{-} \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{8} \mathrm{Rh}_{2} \mathrm{I}_{2}^{2+}$ and PF_{6}^{-}ions. The geonetry of the cation, which possesses crystal imposed C_{2} symmetry, is shown in the figure. There is a direct $\mathrm{Rh}-\mathrm{Rh}$ bond and the iodide ligands are in terminal positions. The $\mathrm{Rh}-\mathrm{Rh}$ bond length of 2.785 (2) A is slightly shorter than the other unbridged $\mathrm{Rh}-\mathrm{Rh}$ bond length which has been determined in bis-(triphenylphosphine)tetrakis (dimethylglyoximato)dirhodium (2.936 R) ${ }^{6}$ but longer than a number of ligand bridged $\mathrm{Rh}-\mathrm{Rh}$ single bonds. ${ }^{7-10}$ it is much shorter than the Rh-Rh aistance (3.396) in che bridged Rh(I) complex $\mathrm{Rh}_{2}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{AsPh}_{2}\right)_{2}(\mathrm{CO})_{2} \mathrm{Cl}_{2} \mathrm{~A}^{11}$ In addition to the axial bonds to iodine and rhodium, each rhodium forms bonds to four isocyanide ligands in a square arrangement. The two $\left(\mathrm{p}_{-1} \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{4} \mathrm{Rh}$ units are twisted 26° from an eclipsed configuration. The planes of the phenyl rings lie very nearly in the RhC_{4} coordination planes.

The structure found agrees with our former predictions and is in accord with results obtained from the oxidation of ligand bridged rhodium(I) dimers $\mathrm{Rh}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPH}_{2}\right)_{2}(\mathrm{CNR})_{4}^{2+12}$ and $\mathrm{Rh}_{2}\left[\mathrm{CN}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NC}_{4}^{2+} \cdot 13\right.$ In all of these cases the bridging geonetry facilitates transannular oxidative addition of a

[^0]

Figure 1. An ORTEP drawing of ($\left.\mathrm{P}^{-} \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{8} \mathrm{Rh}_{2} \mathrm{I}_{2}^{2+}$ showing 50% thermal ellipsoids. Bond lengths are: Rh-Rh, 2.785(2), Rh-I, 2.735(1); Rh-C, range 1.97 to $1.99 ; C=N$, range $1.12-1.16 R$. Bond angles are $R h-R h-I, 178.4$ (2); I-Rh-C, range $90.7-87.0$; $C-R h-C$, range $85.5-91.8^{\circ}$.
halogen to tuo rhodium centers while restricting the insertion of a halide between the metals.

Acknowledgement

We thank the National Science Foundation for support and Matthey Bishop for a loan of rhodium chloride.

References

1. Alan Li Balch and Mo H. Olmstead. J. Am. Chem. Soc., 98(1976)2354.
2. L. Malatesta and F. Bonatx, Lsocyanide Complexes of Metals, WileyInterscience, $N . Y_{0}, 1969$, P. 145.
3. H. J. Keller in Low-Dimensional Cooperative Phencmena, H. J. Keller, ed., Plenum Press, N.Y., 1975, p. 315.
4. D. Baumann, H. J. Keller, D. Nठthe, H.H. Rupp and G. Ohlmann, Z. Naturforsch, $31 b(1976) 912$.
5. D. Rauman, H. Endress, H. J. Keller, and J. Weiss, J. Chem. Soc., Chem. Comm., (1973)853.
6. K. G. Caulton and F. A. Cotton, J. Am. Chem. Soc., 93 (1971)1914.
7. O. S. Mills and E. F. Paulus, J. Organometal Chem., 10(1967)331.
8. O. S. Mills and J. P. Nice, J. Organometal. Chem., 10(1967)337.
9. R. S. Dickson, B. M. Gatehcuse and S. H. Johnson, Acta Cryst. B33(1977) 319.
10. K. G. Connelly, G. A. Johnson, B. A. Kelly, and P. Woodward, J. Chem. Soc., Chem. Comm., (1977).436.
11. J. T. Mague, Inorg. Chem., 8(1969)1975.
12. A. L. Balch, J. Am. Chem. Soc., 98(1976)8049.
13. N. S. Lewis, K. R. Mann, J. G. Gordon, II, H. B. Gray, J. Am. Chem. Soc., 98(1976)7461.

[^0]: *Although the addition of ether will alter the position of equilibrium I in solution, the component which crystallizes is determined by solubility considerations. The Rh(II) dimer must be the least soluble compound of the mixture.

